جلسه 23 1 تابع آنتروپی و خاصیت مقعر بودن نظریه اطلاعات کوانتمی 1 ترم پاییز

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "جلسه 23 1 تابع آنتروپی و خاصیت مقعر بودن نظریه اطلاعات کوانتمی 1 ترم پاییز"

Transcript

1 نظریه اطلاعات کوانتمی ترم پاییز مدرس: ابوالفتح بیگی و امین راده گوهري نویسنده: علی ایزدي راد جلسه 23 تابع آنتروپی و خاصیت مقعر بودن در جلسه ي قبل به تعریف توابع محدب و صعودي پرداختیم و قضیه هاي جنسن کلین پیرل و لونر را بررسی کردیم. در این جلسه قصد داریم تا با استفاده از این قضایاي چند خاصیت تابع آنتروپی را بررسی کنیم تابع آنتروپی در تي وري اطلاعات کوانتومی به صورت (ρ H(ρ) = tr(ρ log تعریف میشود. تابع آنتروپی تابعی مقعر است و در ادامه با چند روش به بررسی این موضوع می پردازیم. تابع f(x) مقعر است اگر( f(x محدب باشد. بنابر این می خواهیم نشان دهیم که : ρ := qσ + qω H(ρ) qh(σ) + qh(ω) tr(ρ log ρ) qtr(σ log σ) qtr(ω log ω) و یا : اثبات اول: تابع f(t) = t log t یک تابع محدب است.اگر نامساوي بالا را بر حسب این تابع بازنویسی کنیم خواهیم داشت : tr(f(qσ + qω)) qtr(f(σ)) + qtr(f(ω)) بنابر این به دنبال این هستیم که نامساوي بالا را اثبات کنیم. ماتریس ρ یک ماتریس مثبت است و بنابراین می توان آن را به صورت زیر نوشت : ρ = λ i e i e i f(ρ) = f(λ i ) e i e i, f(λ i ) = e i f(ρ) e i حال : d tr(f(ρ)) = e i f(ρ) e i = f(λ i ) = f( e i ρ e i ) i= = f( e i qσ + qω e i = f(q e i σ e i + q e i ω e i ) چون تابع f(t) محدب است نامساوي جنسن براي آن برقرار است بنابراین : tr(f(ρ)) q f( e i σ e i ) + q f( e i ω e i )

2 و اکنون طرف راست نامساوي توسط نامسواي پیرل به صورت زیر در می آید : tr(f(ρ)) qtr(f(σ)) + qtr(f(ω)) و این همان نامساوي است که در صدد اثباتش بودیم.پس اثبات تمام است و نتیجه می گیریم که تابع آنتروپی یک تایع مقعر است اثبات دوم: می دانیم که تابع log(t) f(t) = t یک تابع محدب است از تعریف تابع محدب داریم که : qf(σ) + qf(ω) f(qσ + qω) در نتیجه با تعریف ρ = qσ + qω خواهیم داشت : ρ log(ρ) qσ log(σ) + qω log(ω) از قضایاي جبر خطی به خاطر داریم براي دوماتریس مثبت, Aاگر B A B آنگاه tr(b). tr(a) در نتیجه اگر از نامساوي بالا رد بگیریم خواهیم داشت : tr(ρ log(ρ)) qtr(σ log(σ)) + qtr(ω log(ω)) و این نامساوي مقعر بودن تابع آنتروپی را نشان می دهد. اثبات سوم: مجددا یا تعریف ρ = qσ + qω داریم : tr(ρ ln ρ) = tr((qσ + qω) ln ρ) = qtr(σ ln ρ) + qtr(ω ln ρ) با توجه به نامساوي بالا اگر بتوانیم اثبات کنیم که σ) tr(σیا ln ρ) tr(σ ln 0 ρ) tr(σ ln σ) tr(σ ln آنگاه اثبات مقعر بودن تابع به راحتی امکان پذیر می شود.براي اثبات این موضوع از نامساوي کلین کمک میگیریم طبق نامساوي کلین به ازاي تابع محدب f نامساوي زیر برقرار است: tr(f(a) f(b)) tr((a B)f (B)) اکنون با در نظر گرفتن f := t ln t و + t f = ln و A := σ, B := ρ و با استفاده از نامساوي کلین به دست می آوریم که : tr[σ ln σ ρ ln ρ] tr[(σ ρ)(ln ρ + )] tr[(σ ρ)(ln ρ + )] = tr(σ) tr(ρ) + tr(σ ln ρ) tr(ρ ln ρ) = tr(σ ln ρ) tr(ρ ln ρ) اما : در تساوي آخر از این واقعیت بهره جستیم که براي ماتریس هاي چگالیσ tr(ρ) = tr(σ) =,ρ برقرار است. درنتیجه : tr[σ ln σ ρ ln ρ] tr(σ ln ρ) tr(ρ ln ρ) tr(σ ln σ) tr(σ ln ρ) 0 اکنون اثبات مقعر بودن تابع آنتروپی ساده خواهد بود با توجه به نامساوي اخیر : tr(σ ln σ) tr(σ ln ρ) 2

3 tr(ω ln ω) tr(ω ln ρ) tr(ρ ln ρ) = qtr(σ ln ρ) + qtr(ω ln ρ) qtr(σ ln σ) + qtr(ω ln ω) بنابراین : نامساوي اخیر نشان میدهد که تابع آنتروپی مقعر است. اثبات چهارمی هم وجود دارد که از خاصیت نامنفی بدون آنتروپی نسبی به دست می آید تعریف آنتروپی نسبی و خواص ان را در قسمت بعدي اثبات وبررسی می کنیم اما اگر بدانیم که آنتروپی نسبی نامنفی است بنا به تعریف آن نامساوي زیر حاصل می شود و ادامه اثبات مانند روند اثبات سوم خواهد بود : 2 آنتروپی نسبی و خواص آن tr(σ ln σ) tr(σ ln ρ) در اثبات سوم مقعر بودن تابع آنتروپی فون نویمان به جمله ي (ρ tr(σ ln (σ tr(σ ln برخورد کردیم.اگر این رابطه را در پایه مناسب بنویسیم خواهیم داشت : tr(σ ln σ) tr(σ ln ρ) = λ i ln λ i λ i ln µ i = λ i ln( λ i µ i ) جمله ي اخر شبیه به رابطه ي انتروپی نسبی یا فاصله ي کولبک در تي وري اطلاعات کلاسیک است. در تي وري اطلاعات کلاسیک براي دو توزیع q(x) p(x), آنتروپی نسبی به صورت زیر تعریف می شود : D(p q) = p(x) log p(x) q(x) و بنابراین با این شهودي کلاسیکی می توان گفت که: tr(σ ln σ σ ln ρ) = λ i ln( λ i µ i ) := D(σ ρ) خواص انتروپی نسبی در ادامه ي این جلسه بررسی خواهند شد اما اولین خاصیتی که به اثبات چهارم ما براي بررسی مقعر بودن تابع انتروپی کمک می کند این است که : خاصیت اول : آنتروپی نسبی همیشه نامنفی است. براي درستی رابطه بالا با باز نویسی آنتروپی نسبی داریم : D(σ ρ) 0 D(σ ρ) = tr(σ ln σ σ ln ρ) = tr[σ ln σ] tr[σ 2 ln ρσ 2 ] = tr[σ 2 [σ 2 ln σ ln ρσ 2 ]] 3

4 به خاطر داریم که ضرب داخلی بین دوماتریس را می توانستیم به صورت (B,A) (B = tr(a در نظر بگیریم.اگر بخواهیم با این دید به جمله آخر رابطه اخیر نگاه بیاندازیم بد نیست توابع زیر را در ابتدا تعریف کنیم : Φ(A) := A ln σ + (ln ρ)a L(A) := Aσ, L 2 (A) = Aσ 2,..., L k (A) = Aσ k R(A) := ρa (LR)(A) = ρaσ = (RL)(A) (ln L)(A) = A ln σ = A ln σ و مشاهده می شود که : خاصیت اخیر با استفاده از بسط سري تیلور σ ln قابل حصول است. همچنین : Φ(A) = A ln σ + (ln ρ)a = (ln L)(A) + (ln ρ)(a) = [ln L + ln R](A) = ln(lr)(a) اکنون از این توابع براي باز نمایش رابطه ي آنتروپی نسبی کمک می گیریم : D(σ ρ) = tr[σ 2 [σ 2 ln σ ln ρσ 2 ]] = tr[σ 2 ( Φ(σ 2 ))] = σ 2, Φ(σ 2 ) = σ 2, ln(lr)(σ 2 ) ln( σ 2, LR(σ نامساوي پیرل ( 2 = ln( σ 2, ρσ 2 ) = ln(tr(σ 2 ρσ 2 ) = ln(tr(ρσ 2 σ خاصبت جابجایی ln(tr(ρ)) = )) 2 = ln() = 0 پس نامنفی بودن آنتروپی نسبی اثبات شد. تمرین : با نوشتن ρ و σ به صورت تجزیه اشمیت و قرار دادن آنها در تعریف رابطه ي آنتروپی نسبی و با توجه به اینکه آنتروپی نسبی در حالت کلاسیک نامنفی است نشان دهید که آنتروپی نسبی کوانتومی نیز نامنفی است. اکنون می خواهیم دیگر خواص آنتروپی نسبی را بررسی کنیم. در حالت کلاسیک می دانیم که : 4

5 I(X; Y ) = H(X) + H(Y ) H(X, Y ) = x x,y P X (x) log( P X (x) ) + P Y (y) log( P y Y (y) ) P X,Y (x, y) log( P X,Y (x, y) ) = D(P (x, y) P (X)P (Y )) مشابها در حالت کوانتومی نیز رابطه ي زیر برقرار است : I(A; B) = D(ρ AB ρ A ρ B ) درستی این رابطه را با بازنویسی تعریف آنتروپی نسبی می توان پیگیري نمود : D(ρ AB ρ A ρ B ) = tr(ρ AB log(ρ AB ) ρ AB log(ρ A ρ b )) log(ρ A ρ B ) = log(i ρ B )(ρ A I) = log(i ρ B ) + log(ρ A I) اما : همچنین به عنوان تمرین و با استفاده از بسط تیلور می توانید نشان دهید که log(i ρ B ) = I log ρ B است و بنابراین D(ρ AB ρ A ρ B ) = tr(ρ AB log(ρ AB )) tr(ρ AB log(ρ A ρ b ))) = H(AB) tr(ρ AB (I log(ρ B ))) tr(ρ AB (log(ρ A ) I)) = H(AB) + H(B) + H(A) = I(A; B) در محاسبات بالا از این واقعیت استفاده کردیم که ((( B tr(ρ AB I) log(ρ برابر با ) B tr(ρ B log ρ است.جهت تحقیق آن ابتدا می توانید ابتدا حالت ρ AB = ρ A ρ B را بررسی کنید و سپس تعمیم کلی ان توسط تجزیه اشمیت را بنویسید و از این نکته نیز استفاده کنید که. tr = tr A tr B به همین ترتیب در حالت کلاسیک داشتیم که : H(X Y ) = D(P (x, y) p(y)) و مشابها در حالت کوانتومی آن رابطه ي زیر برقرار است : H(A B) = D(ρ AB I A ρ B ) خاصیت دوم: 5

6 خاصیت دیگر آنتروپی نسبی این است که تحت عملگر یکانی ناوردا است یعنی : D(ρ σ) = D(UρU UσU ) تمرین: خاصیت بالا را اثبات کنید خاصیت سوم: یکی دیگر از خواص آنتروپی نسبی جمع پذیري آن است.بدین معنا که : D(ρ ρ 2 σ σ 2 ) = D(ρ σ ) + D(ρ 2 σ 2 ) D(ρ n σ n ) = nd(ρ σ) یکی از نتایج این خاصیت این است که : خاصیت چهارم: خاصیت مهم وجالب دیگر انتروپی نسبی این است که : D(ρ AB σ AB ) D(ρ A σ A ) قضیه آنتروپی نسبی دو حالت ρ و σ با اعمال یک نگاشت نویزي یکسان N به هر دو حالت کاهش پیدا می کند یعنی : D(ρ σ) D(N (ρ) N )(σ)) اثبات: هر نگاشت نویزي را می توان با اضافه کردن حالت 0 E به سیستم و اعمال کردن یک تحول یکانی به سیستم وسپس اثر جزي ی گرفتن به دست اورد یعنی N را به صورت U( 0 0 N (ρ) = tr E U(ρ نوشت. حال با این ایده : D(ρ σ) = D(ρ σ) + D( 0 0 E 0 0 E ) = D(ρ 0 0 E σ 0 0 E ) = D(Uρ 0 0 E U Uσ 0 0 E U ) D(N (ρ) N (σ)) در نامساوي آخر از خاصیت ) A D(ρ AB σ AB ) D(ρ A σ استفاده کردیم تمرین: نشان دهید که انتروپی نسبی بین دو حالت کوانتومی-کلاسیکی ρ XB و σ XB از رابطه زیر به دست می آید : D(ρ XB σ XB ) = P X (x)d(ρ x σ x ) x که در آن : ρ XB := x P X x x X ρ B x قضیه 2 تابع آنتروپی نسبی به صورت مشترك نسبت به آرگومان هاي خود محدب است یعنی اگر تعریف کنیم : = ρ D(ρ σ) x P X (x)d(ρ x σ x ) x P x(x)ρ x و σ = x P X(x)σ x آنگاه : 6

7 اثبات: از تمرین بالا می دانیم که : P X (x)d(ρ x σ x = D(ρ XB σ XB ) x اما از آنجا که بنا به خاصیت آنتروپی نسبی : D(ρ XB σ XB ) D(ρ B σ B ) D(ρ σ) x P X (x)d(ρ x σ x ) پس نتیجه میگیریم که : 7

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز تي وري اطلاعات کوانتومی ترم پاییز 1391-1392 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: محمد مهدي مجاهدیان جلسه 22 تا اینجا خواص مربوط به آنتروپی را بیان کردیم. جهت اثبات این خواص نیاز به ابزارهایی

Διαβάστε περισσότερα

جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی:

جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی: نظریه ي اطلاعات کوانتومی 1 ترم پاي یز 1391-1391 مدرس: دکتر ابوالفتح بیگی ودکتر امین زاده گوهري نویسنده: محمدرضا صنم زاده جلسه 15 فرض کنیم ماتریس چگالی سیستم ترکیبی شامل زیر سیستم هايB و A را داشته باشیم.

Διαβάστε περισσότερα

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: نادر قاسمی جلسه 2 در این درسنامه به مروري کلی از جبر خطی می پردازیم که هدف اصلی آن آشنایی با نماد گذاري دیراك 1 و مباحثی از

Διαβάστε περισσότερα

جلسه 3 ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک کوانتمی بیان. d 1. i=0. i=0. λ 2 i v i v i.

جلسه 3 ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک کوانتمی بیان. d 1. i=0. i=0. λ 2 i v i v i. محاسبات کوانتمی (671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: محمد جواد داوري جلسه 3 می شود. ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک

Διαβάστε περισσότερα

جلسه 9 1 مدل جعبه-سیاه یا جستاري. 2 الگوریتم جستجوي Grover 1.2 مسا له 2.2 مقدمات محاسبات کوانتمی (22671) ترم بهار

جلسه 9 1 مدل جعبه-سیاه یا جستاري. 2 الگوریتم جستجوي Grover 1.2 مسا له 2.2 مقدمات محاسبات کوانتمی (22671) ترم بهار محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: هیربد کمالی نیا جلسه 9 1 مدل جعبه-سیاه یا جستاري مدل هایی که در جلسه ي پیش براي استفاده از توابع در الگوریتم هاي کوانتمی بیان

Διαβάστε περισσότερα

جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد.

جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد. تي وري اطلاعات کوانتمی ترم پاییز 39-39 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: کامران کیخسروي جلسه فرض کنید حالت سیستم ترکیبی AB را داشته باشیم. حالت سیستم B به تنهایی چیست در ابتداي درس که حالات

Διαβάστε περισσότερα

محاسبه ی برآیند بردارها به روش تحلیلی

محاسبه ی برآیند بردارها به روش تحلیلی محاسبه ی برآیند بردارها به روش تحلیلی برای محاسبه ی برآیند بردارها به روش تحلیلی باید توانایی تجزیه ی یک بردار در دو راستا ( محور x ها و محور y ها ) را داشته باشیم. به بردارهای تجزیه شده در راستای محور

Διαβάστε περισσότερα

روش محاسبه ی توان منابع جریان و منابع ولتاژ

روش محاسبه ی توان منابع جریان و منابع ولتاژ روش محاسبه ی توان منابع جریان و منابع ولتاژ ابتدا شرح کامل محاسبه ی توان منابع جریان: برای محاسبه ی توان منابع جریان نخست باید ولتاژ این عناصر را بدست آوریم و سپس با استفاده از رابطه ی p = v. i توان این

Διαβάστε περισσότερα

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1 محاسبات کوانتمی (67) ترم بهار 390-39 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه ذخیره پردازش و انتقال اطلاعات در دنیاي واقعی همواره در حضور خطا انجام می شود. مثلا اطلاعات کلاسیکی که به

Διαβάστε περισσότερα

جلسه 16 نظریه اطلاعات کوانتمی 1 ترم پاییز

جلسه 16 نظریه اطلاعات کوانتمی 1 ترم پاییز نظریه اطلاعات کوانتمی ترم پاییز 39-39 مدرسین: ابوالفتح بیگی و امین زاده گوهري نویسنده: محم دحسن آرام جلسه 6 تا اینجا با دو دیدگاه مختلف و دو عامل اصلی براي تعریف و استفاده از ماتریس چگالی جهت معرفی حالت

Διαβάστε περισσότερα

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال نظریه اطلاعات کوانتمی 1 ترم پاییز 1391-1392 مدرسین: ابوالفتح بیگی و امین زاده گوهري جلسه 2 فراگیري نظریه ي اطلاعات کوانتمی نیازمند داشتن پیش زمینه در جبرخطی می باشد این نظریه ترکیب زیبایی از جبرخطی و نظریه

Διαβάστε περισσότερα

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network شنبه 2 اسفند 1393 جلسه هفتم استاد: مهدي جعفري نگارنده: سید محمدرضا تاجزاد تعریف 1 بهینه سازي محدب : هدف پیدا کردن مقدار بهینه یک تابع ) min

Διαβάστε περισσότερα

جلسه 28. فرض کنید که m نسخه مستقل یک حالت محض دلخواه

جلسه 28. فرض کنید که m نسخه مستقل یک حالت محض دلخواه نظریه اطلاعات کوانتمی 1 ترم پاییز 1392-1391 مدرسین: ابوالفتح بیگی و امین زاده گوهري نویسنده: مرتضی نوشاد جلسه 28 1 تقطیر و ترقیق درهم تنیدگی ψ m بین آذر و بابک به اشتراك گذاشته شده است. آذر و AB فرض کنید

Διαβάστε περισσότερα

سايت ويژه رياضيات درسنامه ها و جزوه هاي دروس رياضيات

سايت ويژه رياضيات   درسنامه ها و جزوه هاي دروس رياضيات سايت ويژه رياضيات درسنامه ها و جزوه هاي دروس رياضيات دانلود نمونه سوالات امتحانات رياضي نمونه سوالات و پاسخنامه كنكور دانلود نرم افزارهاي رياضيات و... کانال سایت ریاضی سرا در تلگرام: https://telegram.me/riazisara

Διαβάστε περισσότερα

مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) X"Y=-XY" X" X" kx = 0

مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) XY=-XY X X kx = 0 مثال( مساله الپالس در ناحیه داده شده را حل کنید. (,)=() > > < π () حل: به کمک جداسازی متغیرها: + = (,)=X()Y() X"Y=-XY" X" = Y" ثابت = k X Y X" kx = { Y" + ky = X() =, X(π) = X" kx = { X() = X(π) = معادله

Διαβάστε περισσότερα

تحلیل مدار به روش جریان حلقه

تحلیل مدار به روش جریان حلقه تحلیل مدار به روش جریان حلقه برای حل مدار به روش جریان حلقه باید مراحل زیر را طی کنیم: مرحله ی 1: مدار را تا حد امکان ساده می کنیم)مراقب باشید شاخه هایی را که ترکیب می کنید مورد سوال مسئله نباشد که در

Διαβάστε περισσότερα

جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان

جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network سه شنبه 21 اسفند 1393 جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان استاد: مهدي جعفري نگارنده: علیرضا حیدري خزاي ی در این نوشته مقدمه اي بر

Διαβάστε περισσότερα

مدار معادل تونن و نورتن

مدار معادل تونن و نورتن مدار معادل تونن و نورتن در تمامی دستگاه های صوتی و تصویری اگرچه قطعات الکتریکی زیادی استفاده می شود ( مانند مقاومت سلف خازن دیود ترانزیستور IC ترانس و دهها قطعه ی دیگر...( اما هدف از طراحی چنین مداراتی

Διαβάστε περισσότερα

آزمایش 8: تقویت کننده عملیاتی 2

آزمایش 8: تقویت کننده عملیاتی 2 آزمایش 8: تقویت کننده عملیاتی 2 1-8 -مقدمه 1 تقویت کننده عملیاتی (OpAmp) داراي دو یا چند طبقه تقویت کننده تفاضلی است که خروجی- هاي هر طبقه به وروديهاي طبقه دیگر متصل شده است. در انتهاي این تقویت کننده

Διαβάστε περισσότερα

محاسبات کوانتمی 1 علم ساخت و استفاده از کامپیوتري است که بر پایه ي اصول مکانیک کوانتم قرار گرفته است.

محاسبات کوانتمی 1 علم ساخت و استفاده از کامپیوتري است که بر پایه ي اصول مکانیک کوانتم قرار گرفته است. محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه 1 محاسبات کوانتمی 1 علم ساخت و استفاده از کامپیوتري است که بر پایه ي اصول مکانیک کوانتم قرار گرفته

Διαβάστε περισσότερα

معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد:

معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد: شکل کلی معادلات همگن خطی مرتبه دوم با ضرایب ثابت = ٠ cy ay + by + و معادله درجه دوم = ٠ c + br + ar را معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد: c ١ e r١x

Διαβάστε περισσότερα

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) :

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) : ۱ گرادیان تابع (y :f(x, اگر f یک تابع دومتغیره باشد ا نگاه گرادیان f برداری است که به صورت زیر تعریف می شود f(x, y) = D ۱ f(x, y), D ۲ f(x, y) اگر رویه S نمایش تابع (y Z = f(x, باشد ا نگاه f در هر نقطه

Διαβάστε περισσότερα

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال دانشکده ی علوم ریاضی احتمال و کاربردا ن ۴ اسفند ۹۲ جلسه ی : چند مثال مدر س: دکتر شهرام خزاي ی نگارنده: مهدی پاک طینت (تصحیح: قره داغی گیوه چی تفاق در این جلسه به بررسی و حل چند مثال از مطالب جلسات گذشته

Διαβάστε περισσότερα

تمرینات درس ریاض عموم ٢. r(t) = (a cos t, b sin t), ٠ t ٢π. cos ٢ t sin tdt = ka۴. x = ١ ka ۴. m ٣ = ٢a. κds باشد. حاصل x٢

تمرینات درس ریاض عموم ٢. r(t) = (a cos t, b sin t), ٠ t ٢π. cos ٢ t sin tdt = ka۴. x = ١ ka ۴. m ٣ = ٢a. κds باشد. حاصل x٢ دانش اه صنعت شریف دانش ده ی علوم ریاض تمرینات درس ریاض عموم سری دهم. ١ سیم نازک داریم که روی دایره ی a + y x و در ربع اول نقطه ی,a را به نقطه ی a, وصل م کند. اگر چ ال سیم در نقطه ی y,x برابر kxy باشد جرم

Διαβάστε περισσότερα

جلسه ی ۱۰: الگوریتم مرتب سازی سریع

جلسه ی ۱۰: الگوریتم مرتب سازی سریع دانشکده ی علوم ریاضی داده ساختارها و الگوریتم ها ۸ مهر ۹ جلسه ی ۱۰: الگوریتم مرتب سازی سریع مدر س: دکتر شهرام خزاي ی نگارنده: محمد امین ادر یسی و سینا منصور لکورج ۱ شرح الگور یتم الگوریتم مرتب سازی سریع

Διαβάστε περισσότερα

مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل

مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل شما باید بعد از مطالعه ی این جزوه با مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل کامال آشنا شوید. VA R VB به نظر شما افت ولتاژ مقاومت R چیست جواب: به مقدار عددی V A

Διαβάστε περισσότερα

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد دانشگاه صنعتی خواجه نصیر طوسی دانشکده برق - گروه کنترل آزمایشگاه کنترل سیستمهای خطی گزارش کار نمونه تابستان 383 به نام خدا گزارش کار آزمایش اول عنوان آزمایش: آشنایی با نحوه پیاده سازی الکترونیکی فرایندها

Διαβάστε περισσότερα

جلسه ی ۵: حل روابط بازگشتی

جلسه ی ۵: حل روابط بازگشتی دانشکده ی علوم ریاضی ساختمان داده ها ۶ مهر ۲ جلسه ی ۵: حل روابط بازگشتی مدر س: دکتر شهرام خزاي ی نگارنده: ا رمیتا ثابتی اشرف و علی رضا علی ا بادیان ۱ مقدمه پیدا کردن کران مجانبی توابع معمولا با پیچیدگی

Διαβάστε περισσότερα

جلسه ی ۲۴: ماشین تورینگ

جلسه ی ۲۴: ماشین تورینگ دانشکده ی علوم ریاضی نظریه ی زبان ها و اتوماتا ۲۶ ا ذرماه ۱۳۹۱ جلسه ی ۲۴: ماشین تورینگ مدر س: دکتر شهرام خزاي ی نگارندگان: حمید ملک و امین خسر وشاهی ۱ ماشین تور ینگ تعریف ۱ (تعریف غیررسمی ماشین تورینگ)

Διαβάστε περισσότερα

فعالیت = ) ( )10 6 ( 8 = )-4( 3 * )-5( 3 = ) ( ) ( )-36( = m n m+ m n. m m m. m n mn

فعالیت = ) ( )10 6 ( 8 = )-4( 3 * )-5( 3 = ) ( ) ( )-36( = m n m+ m n. m m m. m n mn درس»ریشه ام و توان گویا«تاکنون با مفهوم توان های صحیح اعداد و چگونگی کاربرد آنها در ریشه گیری دوم و سوم اعداد آشنا شده اید. فعالیت زیر به شما کمک می کند تا ضمن مرور آنچه تاکنون در خصوص اعداد توان دار و

Διαβάστε περισσότερα

1) { } 6) {, } {{, }} 2) {{ }} 7 ) { } 3) { } { } 8) { } 4) {{, }} 9) { } { }

1) { } 6) {, } {{, }} 2) {{ }} 7 ) { } 3) { } { } 8) { } 4) {{, }} 9) { } { } هرگاه دسته اي از اشیاء حروف و اعداد و... که کاملا"مشخص هستند با هم در نظر گرفته شوند یک مجموعه را به وجود می آورند. عناصر تشکیل دهنده ي یک مجموعه باید دو شرط اساسی را داشته باشند. نام گذاري مجموعه : الف

Διαβάστε περισσότερα

آزمایش 1: پاسخ فرکانسی تقویتکننده امیتر مشترك

آزمایش 1: پاسخ فرکانسی تقویتکننده امیتر مشترك آزمایش : پاسخ فرکانسی تقویتکننده امیتر مشترك -- مقدمه هدف از این آزمایش بدست آوردن فرکانس قطع بالاي تقویتکننده امیتر مشترك بررسی عوامل تاثیرگذار و محدودکننده این پارامتر است. شکل - : مفهوم پهناي باند تقویت

Διαβάστε περισσότερα

دبیرستان غیر دولتی موحد

دبیرستان غیر دولتی موحد دبیرستان غیر دلتی محد هندسه تحلیلی فصل دم معادله های خط صفحه ابتدا باید بدانیم که از یک نقطه به مازات یک بردار تنها یک خط می گذرد. با تجه به این مطلب برای نشتن معادله یک خط احتیاج به داشتن یک نقطه از خط

Διαβάστε περισσότερα

تصاویر استریوگرافی.

تصاویر استریوگرافی. هب انم خدا تصاویر استریوگرافی تصویر استریوگرافی یک روش ترسیمی است که به وسیله آن ارتباط زاویه ای بین جهات و صفحات بلوری یک کریستال را در یک فضای دو بعدی )صفحه کاغذ( تعیین میکنند. کاربردها بررسی ناهمسانگردی

Διαβάστε περισσότερα

جلسه ی ۳: نزدیک ترین زوج نقاط

جلسه ی ۳: نزدیک ترین زوج نقاط دانشکده ی علوم ریاضی ا نالیز الگوریتم ها ۴ بهمن ۱۳۹۱ جلسه ی ۳: نزدیک ترین زوج نقاط مدر س: دکتر شهرام خزاي ی نگارنده: امیر سیوانی اصل ۱ پیدا کردن نزدیک ترین زوج نقطه فرض می کنیم n نقطه داریم و می خواهیم

Διαβάστε περισσότερα

جلسه ی ۴: تحلیل مجانبی الگوریتم ها

جلسه ی ۴: تحلیل مجانبی الگوریتم ها دانشکده ی علوم ریاضی ساختمان داده ها ۲ مهر ۱۳۹۲ جلسه ی ۴: تحلیل مجانبی الگوریتم ها مدر س: دکتر شهرام خزاي ی نگارنده: شراره عز ت نژاد ا رمیتا ثابتی اشرف ۱ مقدمه الگوریتم ابزاری است که از ا ن برای حل مسا

Διαβάστε περισσότερα

هندسه تحلیلی بردارها در فضای R

هندسه تحلیلی بردارها در فضای R هندسه تحلیلی بردارها در فضای R فصل اول-بردارها دستگاه مختصات سه بعدی از سه محور ozوoyوox عمود بر هم تشکیل شده که در نقطه ای به نام o یکدیگر را قطع می کنند. قرارداد: دستگاه مختصات سه بعدی راستگرد می باشد

Διαβάστε περισσότερα

آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ(

آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ( آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ( فرض کنید جمعیت یک دارای میانگین و انحراف معیار اندازه µ و انحراف معیار σ باشد و جمعیت 2 دارای میانگین µ2 σ2 باشند نمونه های تصادفی مستقل از این دو جامعه

Διαβάστε περισσότερα

تخمین با معیار مربع خطا: حالت صفر: X: مکان هواپیما بدون مشاهده X را تخمین بزنیم. بهترین تخمین مقداری است که متوسط مربع خطا مینیمم باشد:

تخمین با معیار مربع خطا: حالت صفر: X: مکان هواپیما بدون مشاهده X را تخمین بزنیم. بهترین تخمین مقداری است که متوسط مربع خطا مینیمم باشد: تخمین با معیار مربع خطا: هدف: با مشاهده X Y را حدس بزنیم. :y X: مکان هواپیما مثال: مشاهده نقطه ( مجموعه نقاط کنارهم ) روی رادار - فرض کنیم می دانیم توزیع احتمال X به چه صورت است. حالت صفر: بدون مشاهده

Διαβάστε περισσότερα

فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت

فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت در تقویت کننده ها از فیدبک منفی استفاده می نمودیم تا بهره خیلی باال نرفته و سیستم پایدار بماند ولی در فیدبک مثبت هدف فقط باال بردن بهره است در

Διαβάστε περισσότερα

تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب

تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: این شبکه دارای دو واحد کامال یکسان آنها 400 MW میباشد. است تلفات خط انتقال با مربع توان انتقالی متناسب و حداکثر

Διαβάστε περισσότερα

تحلیل الگوریتم پیدا کردن ماکزیمم

تحلیل الگوریتم پیدا کردن ماکزیمم تحلیل الگوریتم پیدا کردن ماکزیمم امید اعتصامی پژوهشگاه دانشهاي بنیادي پژوهشکده ریاضیات 1 انگیزه در تحلیل الگوریتم ها تحلیل احتمالاتی الگوریتم ها روشی براي تخمین پیچیدگی محاسباتی یک الگوریتم یا مساله ي

Διαβάστε περισσότερα

همبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین

همبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین همبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین دو صفت متغیر x و y رابطه و همبستگی وجود دارد یا خیر و آیا می توان یک مدل ریاضی و یک رابطه

Διαβάστε περισσότερα

نویسنده: محمدرضا تیموری محمد نصری مدرس: دکتر پرورش خالصۀ موضوع درس سیستم های مینیمم فاز: به نام خدا

نویسنده: محمدرضا تیموری محمد نصری مدرس: دکتر پرورش خالصۀ موضوع درس سیستم های مینیمم فاز: به نام خدا به نام خدا پردازش سیگنالهای دیجیتال نیمسال اول ۹۵-۹۶ هفته یازدهم ۹۵/۰8/2۹ مدرس: دکتر پرورش نویسنده: محمدرضا تیموری محمد نصری خالصۀ موضوع درس یا سیستم های مینیمم فاز تجزیه ی تابع سیستم به یک سیستم مینیمم

Διαβάστε περισσότερα

فصل پنجم زبان های فارغ از متن

فصل پنجم زبان های فارغ از متن فصل پنجم زبان های فارغ از متن خانواده زبان های فارغ از متن: ( free )context تعریف: گرامر G=(V,T,,P) کلیه قوانین آن به فرم زیر باشد : یک گرامر فارغ از متن گفته می شود در صورتی که A x A Є V, x Є (V U T)*

Διαβάστε περισσότερα

Angle Resolved Photoemission Spectroscopy (ARPES)

Angle Resolved Photoemission Spectroscopy (ARPES) Angle Resolved Photoemission Spectroscopy (ARPES) روش ARPES روشی است تجربی که برای تعیین ساختار الکترونی مواد به کار می رود. این روش بر پایه اثر فوتوالکتریک است که توسط هرتز کشف شد: الکترونها می توانند

Διαβάστε περισσότερα

:موس لصف یسدنه یاه لکش رد یلوط طباور

:موس لصف یسدنه یاه لکش رد یلوط طباور فصل سوم: 3 روابط طولی درشکلهای هندسی درس او ل قضیۀ سینوس ها یادآوری منظور از روابط طولی رابطه هایی هستند که در مورد اندازه های پاره خط ها و زاویه ها در شکل های مختلف بحث می کنند. در سال گذشته روابط طولی

Διαβάστε περισσότερα

باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g

باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g تعریف : 3 فرض کنیم D دامنه تابع f زیر مجموعه ای از R باشد a D تابع f:d R در نقطه a پیوسته است هرگاه به ازای هر دنباله از نقاط D مانند { n a{ که به a همگراست دنبال ه ){ n }f(a به f(a) همگرا باشد. محتوی

Διαβάστε περισσότερα

فصل 5 :اصل گسترش و اعداد فازی

فصل 5 :اصل گسترش و اعداد فازی فصل 5 :اصل گسترش و اعداد فازی : 1-5 اصل گسترش در ریاضیات معمولی یکی از مهمترین ابزارها تابع می باشد.تابع یک نوع رابطه خاص می باشد رابطه ای که در نمایش زوج مرتبی عنصر اول تکراری نداشته باشد.معموال تابع

Διαβάστε περισσότερα

تمرین اول درس کامپایلر

تمرین اول درس کامپایلر 1 تمرین اول درس 1. در زبان مربوط به عبارت منظم زیر چند رشته یکتا وجود دارد (0+1+ϵ)(0+1+ϵ)(0+1+ϵ)(0+1+ϵ) جواب 11 رشته کنند abbbaacc را در نظر بگیرید. کدامیک از عبارتهای منظم زیر توکنهای ab bb a acc را ایجاد

Διαβάστε περισσότερα

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود.

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. مفاهیم اصلی جهت آنالیز ماشین های الکتریکی سه فاز محاسبه اندوکتانس سیمپیچیها و معادالت ولتاژ ماشین الف ) ماشین سنکرون جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. در حال حاضر از

Διαβάστε περισσότερα

خالصه درس: نویسنده:مینا سلیمان گندمی و هاجر کشاورز امید ریاضی شرطی. استقالل متغیر های تصادفی پیوسته x و y استقالل و امید ریاضی

خالصه درس: نویسنده:مینا سلیمان گندمی و هاجر کشاورز امید ریاضی شرطی. استقالل متغیر های تصادفی پیوسته x و y استقالل و امید ریاضی به نام خدا آمار و احتمال مهندسی هفته 21 نیمسال اول ۴9-۴9 مدرس: دکتر پرورش ۴9/24/49 نویسنده:مینا سلیمان گندمی و هاجر کشاورز خالصه درس: امید ریاضی شرطی استقالل متغیر های تصادفی پیوسته x و y استقالل و امید

Διαβάστε περισσότερα

به نام ستاره آفرین قضیه ویریال جنبشی کل ذرات یک سیستم پایدار مقید به نیرو های پایستار را به متوسط انرژی پتانسیل کل شان

به نام ستاره آفرین قضیه ویریال جنبشی کل ذرات یک سیستم پایدار مقید به نیرو های پایستار را به متوسط انرژی پتانسیل کل شان به نام ستاره آفرین قضیه ویریال درود بر ملت نجومی! در این درس نامه می خواهیم یکی از قضیه های معروف اخترفیزیک و مکانیک یعنی قضیه ی شریفه ی ویریال را به دست آوریم. به طور خالصه قضیه ی ویریال متوسط انرژی جنبشی

Διαβάστε περισσότερα

مینامند یا میگویند α یک صفر تابع

مینامند یا میگویند α یک صفر تابع 1 1-1 مقدمه حل بسیاری از مسائل اجتماعی اقتصادی علمی منجر به حل معادله ای به شکل ) ( می شد. منظر از حل این معادله یافتن عدد یا اعدادی است که مقدار تابع به ازای آنها صفر شد. اگر (α) آنگاه α را ریشه معادله

Διαβάστε περισσότερα

شاخصهای پراکندگی دامنهی تغییرات:

شاخصهای پراکندگی دامنهی تغییرات: شاخصهای پراکندگی شاخصهای پراکندگی بیانگر میزان پراکندگی دادههای آماری میباشند. مهمترین شاخصهای پراکندگی عبارتند از: دامنهی تغییرات واریانس انحراف معیار و ضریب تغییرات. دامنهی تغییرات: اختالف بزرگترین و

Διαβάστε περισσότερα

1 دایره فصل او ل کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم با محیط ثابت دایره دارای بیشترین مساحت است. این موضوع در طراحی

1 دایره فصل او ل کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم با محیط ثابت دایره دارای بیشترین مساحت است. این موضوع در طراحی فصل او ل 1 دایره هندسه در ساخت استحکامات دفاعی قلعهها و برج و باروها از دیرباز کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم به»قضیۀ همپیرامونی«میگوید در بین همۀ شکلهای هندسی بسته با محیط ثابت

Διαβάστε περισσότερα

هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه

هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه آزما ی ش شش م: پا س خ فرکا نس ی مدا رات مرتبه اول هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه و پاسخ فاز بررسی رفتار فیلتري آنها بدست

Διαβάστε περισσότερα

به نام خدا. الف( توضیح دهید چرا از این تکنیک استفاده میشود چرا تحلیل را روی کل سیگنال x[n] انجام نمیدهیم

به نام خدا. الف( توضیح دهید چرا از این تکنیک استفاده میشود چرا تحلیل را روی کل سیگنال x[n] انجام نمیدهیم پردازش گفتار به نام خدا نیمسال اول 59-59 دکتر صامتی تمرین سری سوم پیشبینی خطی و کدینگ شکلموج دانشکده مهندسی کامپیوتر زمان تحویل: 32 آبان 4259 تمرینهای تئوری: سوال 1. می دانیم که قبل از انجام تحلیل پیشبینی

Διαβάστε περισσότερα

بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )2( shimiomd

بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )2( shimiomd بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )( shimiomd خواندن مقاومت ها. بررسی قانون اهم برای مدارهای متوالی. 3. بررسی قانون اهم برای مدارهای موازی بدست آوردن مقاومت مجهول توسط پل وتسون 4. بدست آوردن مقاومت

Διαβάστε περισσότερα

CD = AB, BC = ٢DA, BCD = ٣٠ الاضلاع است.

CD = AB, BC = ٢DA, BCD = ٣٠ الاضلاع است. 1.چهار مثلث چوبی مساوي با اضلاع 3 و 4 و 5 داریم. با استفاده از این چهار مثلث چه تعداد چندضلعی محدب می توان ساخت نیازي به اثبات نیست و تنها کافی است چندضلعی هاي موردنظر را رسم کنید. چندضلعی محدب به چندضلعی

Διαβάστε περισσότερα

فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22

فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22 فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی آنچه باید پیش از شروع کتاب مدار بدانید تا مدار را آسان بیاموزید.............................. 2 مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل................................................

Διαβάστε περισσότερα

دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم

دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم آزمون پایان ترم درس: هندسه منیفلد 1 زمان آزمون 120 دقیقه نیمسال: اول 95-94 رشته تحصیلی : ریاضی محض 1. نشان دهید X یک میدان برداري روي M است اگر و فقط اگر براي هر تابع مشتقپذیر f روي X(F ) M نیز مشتقپذیر

Διαβάστε περισσότερα

فصل چهارم تعیین موقعیت و امتدادهای مبنا

فصل چهارم تعیین موقعیت و امتدادهای مبنا فصل چهارم تعیین موقعیت و امتدادهای مبنا هدف های رفتاری پس از آموزش و مطالعه این فصل از فراگیرنده انتظار می رود بتواند: 1 راهکار کلی مربوط به ترسیم یک امتداد در یک سیستم مختصات دو بعدی و اندازه گیری ژیزمان

Διαβάστε περισσότερα

Ali Karimpour Associate Professor Ferdowsi University of Mashhad. Reference: Chi-Tsong Chen, Linear System Theory and Design, 1999.

Ali Karimpour Associate Professor Ferdowsi University of Mashhad. Reference: Chi-Tsong Chen, Linear System Theory and Design, 1999. DVNCED CONTROL l Karmpour ssoca Prossor Frdows Uvrsy o Mashhad Rrc: Ch-Tsog Ch, Lar Sysm Thory ad Dsg, 999. Lcur lcur Basc Ida o Lar lgbra-par II Topcs o b covrd clud: Fucos o Squar Marx. Lyapuov Equao.

Διαβάστε περισσότερα

هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله

هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله آزما ی ش پنج م: پا س خ زمانی مدا رات مرتبه دوم هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومLC اندازهگيري پارامترهاي مختلف معادله مشخصه بررسی مقاومت بحرانی و آشنایی با پدیده

Διαβάστε περισσότερα

عنوان: رمزگذاري جستجوپذیر متقارن پویا

عنوان: رمزگذاري جستجوپذیر متقارن پویا دانشگاه صنعتی شریف دانشکده مهندسی برق گزارش درس ریاضیات رمزنگاري عنوان: رمزگذاري جستجوپذیر متقارن پویا استاد درس: مهندس نگارنده: ز 94 دي ماه 1394 1 5 نماد گذاري و تعریف مسي له 1 6 رمزگذاري جستجوپذیر متقارن

Διαβάστε περισσότερα

جلسه ی ۱۸: درهم سازی سرتاسری - درخت جست و جوی دودویی

جلسه ی ۱۸: درهم سازی سرتاسری - درخت جست و جوی دودویی دانشکده ی علوم ریاضی ساختمان داده ۱۰ ا ذر ۹۲ جلسه ی ۱۸: درهم سازی سرتاسری - درخت جست و جوی دودویی مدر س: دکتر شهرام خزاي ی نگارنده: معین زمانی و ا رمیتا اردشیری ۱ یادا وری همان طور که درجلسات پیش مطرح

Διαβάστε περισσότερα

تئوری رفتار مصرف کننده : می گیریم. فرض اول: فرض دوم: فرض سوم: فرض چهارم: برای بیان تئوری رفتار مصرف کننده ابتدا چهار فرض زیر را در نظر

تئوری رفتار مصرف کننده : می گیریم. فرض اول: فرض دوم: فرض سوم: فرض چهارم: برای بیان تئوری رفتار مصرف کننده ابتدا چهار فرض زیر را در نظر تئوری رفتار مصرف کننده : می گیریم برای بیان تئوری رفتار مصرف کننده ابتدا چهار فرض زیر را در نظر فرض اول: مصرف کننده یک مصرف کننده منطقی است یعنی دارای رفتار عقالیی می باشد به عبارت دیگر از مصرف کاالها

Διαβάστε περισσότερα

به نام حضرت دوست. Downloaded from: درسنامه

به نام حضرت دوست. Downloaded from:  درسنامه به نام حضرت دوست درسنامه کروی هندسه گردآوری: و تهی ه معتمدی ارسالن اصالح: سی د و بازبینی امیر سادات موسوی سالم دوستان همان طور که می دانیم نجوم کروی یکی از بخش های مهم المپیاد نجوم است. این علم شامل دو

Διαβάστε περισσότερα

آشنایی با پدیده ماره (moiré)

آشنایی با پدیده ماره (moiré) فلا) ب) آشنایی با پدیده ماره (moiré) توری جذبی- هرگاه روی ورقه شفافی چون طلق تعداد زیادی نوارهای خطی کدر هم پهنا به موازات یکدیگر و به فاصله های مساوی از هم رسم کنیم یک توری خطی جذبی به وجود می آید شکل

Διαβάστε περισσότερα

پروژه یازدهم: ماشین هاي بردار پشتیبان

پروژه یازدهم: ماشین هاي بردار پشتیبان پروژه یازدهم: ماشین هاي بردار پشتیبان 1 عموما براي مسایلی که در آنها دو دسته وجود دارد استفاده میشوند اما ماشین هاي بردار پشتیبان روشهاي متفاوتی براي ترکیب چند SVM و ایجاد یک الگوریتم دستهبندي چند کلاس

Διαβάστε περισσότερα

فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت

فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت جزوه تکنیک پالس فصل چهارم: مولتی ویبراتورهای ترانزیستوری فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت در تقویت کننده ها از فیدبک منفی استفاده می نمودیم تا بهره خیلی باال نرفته و سیستم پایدار

Διαβάστε περισσότερα

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. - اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط اجسام متحرک را محاسبه کند. 4- تندی متوسط و لحظه ای را

Διαβάστε περισσότερα

مسائل. 2 = (20)2 (1.96) 2 (5) 2 = 61.5 بنابراین اندازه ی نمونه الزم باید حداقل 62=n باشد.

مسائل. 2 = (20)2 (1.96) 2 (5) 2 = 61.5 بنابراین اندازه ی نمونه الزم باید حداقل 62=n باشد. ) مسائل مدیریت کارخانه پوشاک تصمیم دارد مطالعه ای به منظور تعیین میانگین پیشرفت کارگران کارخانه انجام دهد. اگر او در این مطالعه دقت برآورد را 5 نمره در نظر بگیرد و فرض کند مقدار انحراف معیار پیشرفت کاری

Διαβάστε περισσότερα

می باشد. انشاال قسمت شعاعی بماند برای مکانیک کوانتومی 2.

می باشد. انشاال قسمت شعاعی بماند برای مکانیک کوانتومی 2. تکانه زاویه ای اهداف فصل: در این فصل سعی میکنیم تا مساله شرودینگر را در حالت سه بعدی مورد بررسی قرار دهیم. مهمترین نکته فصل این است که ما در انجا فقط پتانسیل های شعاعی را در نظر می گیریم. یعنی پتانسیل

Διαβάστε περισσότερα

فصل سوم جبر بول هدف های رفتاری: در پایان این فصل از فراگیرنده انتظار می رود که :

فصل سوم جبر بول هدف های رفتاری: در پایان این فصل از فراگیرنده انتظار می رود که : فصل سوم جبر بول هدف کلی: شناخت جبر بول و اتحادهای اساسی آن توابع بولی به شکل مجموع حاصل ضرب ها و حاصل ضرب جمع ها پیاده سازی توابع منطقی توسط دروازه های منطقی پایه و نقشة کارنو هدف های رفتاری: در پایان

Διαβάστε περισσότερα

فصل دهم: همبستگی و رگرسیون

فصل دهم: همبستگی و رگرسیون فصل دهم: همبستگی و رگرسیون مطالب این فصل: )r ( کوواریانس ضریب همبستگی رگرسیون ضریب تعیین یا ضریب تشخیص خطای معیار برآور ( )S XY انواع ضرایب همبستگی برای بررسی رابطه بین متغیرهای کمی و کیفی 8 در بسیاری

Διαβάστε περισσότερα

ثابت. Clausius - Clapeyran 1

ثابت. Clausius - Clapeyran 1 جدول 15 فشار بخار چند مایع خالص در دمای 25 C فشار بخار در دمایC (atm) 25 نام مایع 0/7 دیاتیل اتر 0/3 برم 0/08 اتانول 0/03 آب دمای جوش یک مایع برابر است با دمایی که فشار بخار تعادلی آن مایع با فشار اتمسفر

Διαβάστε περισσότερα

I = I CM + Mh 2, (cm = center of mass)

I = I CM + Mh 2, (cm = center of mass) قواعد کلی اینرسی دو ارنی المان گیری الزمه یادگیری درست و کامل این مباحث که بخش زیادی از نمره پایان ترم ار به خود اختصاص می دهند یادگیری دقیق نکات جزوه استاد محترم و درک درست روابط ریاضی حاکم بر آن ها است

Διαβάστε περισσότερα

مسي لهای در م انی : نردبان که کنار دیوار لیز م خورد

مسي لهای در م انی : نردبان که کنار دیوار لیز م خورد گاما شماره ی ٢٣ تابستان ١٣٨٩ مسي لهای در م انی : نردبان که کنار دیوار لیز م خورد امیر آقامحمدی چ یده مسي لهی نردبان که کنار دیوار لیز م خورد بدون و با در نظر گرفتن اصط اک بررس شده است. م خواهیم حرکت نردبان

Διαβάστε περισσότερα

Beta Coefficient نویسنده : محمد حق وردی

Beta Coefficient نویسنده : محمد حق وردی مفهوم ضریب سهام بتای Beta Coefficient نویسنده : محمد حق وردی مقدمه : شاید بارها در مقاالت یا گروهای های اجتماعی مربوط به بازار سرمایه نام ضریب بتا رو دیده باشیم یا جایی شنیده باشیم اما برایمان مبهم باشد

Διαβάστε περισσότερα

بررسی خرابی در سازه ها با استفاده از نمودارهاي تابع پاسخ فرکانس مجتبی خمسه

بررسی خرابی در سازه ها با استفاده از نمودارهاي تابع پاسخ فرکانس مجتبی خمسه بررسی خرابی در سازه ها با استفاده از نمودارهاي تابع پاسخ فرکانس پیمان ترکزاده مجتبی خمسه یونس گودرزي - استادیار بخش مهندسی عمران دانشگاه شهید باهنر کرمان - دانشجوي کارشناسی ارشد سازه دانشگاه تحصیلات تکمیلی

Διαβάστε περισσότερα

هندسه تحلیلی و جبر خطی ( خط و صفحه )

هندسه تحلیلی و جبر خطی ( خط و صفحه ) هندسه تحلیلی جبر خطی ( خط صفحه ) z معادالت متقارن ) : خط ( معادله برداری - معادله پارامتری P فرض کنید e معادلهی خطی باشد که از نقطه ی P به مازات بردار ( c L ) a b رسم شده باشد اگر ( z P ) x y l L نقطهی

Διαβάστε περισσότερα

Answers to Problem Set 5

Answers to Problem Set 5 Answers to Problem Set 5 Principle of Economics Graduate School of Management and Economics, Sharif University of Technology Fall 94 5. Suppose a competitive firm has the following cost function c(y) =

Διαβάστε περισσότερα

ˆ ˆ ˆ. r A. Axyz ( ) ( Axyz. r r r ( )

ˆ ˆ ˆ. r A. Axyz ( ) ( Axyz. r r r ( ) دینامیک و ارتعاشات ad ad ω x, ω y 6, ω z s s ωω ˆ ˆ ˆ ˆ y j+ω z k 6j+ k A xx x ˆ yy y ˆ zz z ˆ H I ω i+ I ω j+ I ω k, ω x HA Iyyω y ˆ i+ Izz ωz k ˆ Ωω y ĵ پاسخ تشریحی توسط: استاد مسیح لقمانی A گزینه درست

Διαβάστε περισσότερα

برابری کار نیروی برآیند و تغییرات انرژی جنبشی( را بدست آورید. ماتریس ممان اینرسی s I A

برابری کار نیروی برآیند و تغییرات انرژی جنبشی( را بدست آورید. ماتریس ممان اینرسی s I A مبحث بیست و سوم)مباحث اندازه حرکت وضربه قانون بقای اندازه حرکت انرژی جنبشی و قانون برابری کار نیروی برآیند و تغییرات انرژی جنبشی( تکلیف از مبحث ماتریس ممان اینرسی( را بدست آورید. ماتریس ممان اینرسی s I

Διαβάστε περισσότερα

2/13/2015 حمیدرضا پوررضا H.R. POURREZA 2 آخرین گام در ساخت یک سیستم ارزیابی آن است

2/13/2015 حمیدرضا پوررضا H.R. POURREZA 2 آخرین گام در ساخت یک سیستم ارزیابی آن است 1 ارزیا ی م حمیدرضا پوررضا قد 2 آخرین گام در ساخت یک سیستم ارزیابی آن است 1 ف ی ا ط لاحات 3 :Degrees of Freedom (DOF) این اصطلاح در سیستمهاي ردیاب استفاده میشود و بنابه تعریف عبارتست از آزادي حرکت انتقالی

Διαβάστε περισσότερα

ارتعاشات واداشته از حرارت در تیرها با در نظر گرفتن اینرسی دورانی

ارتعاشات واداشته از حرارت در تیرها با در نظر گرفتن اینرسی دورانی ارتعاشات واداشته از حرارت در تیرها با در نظر محمدرضا یعقوبی 1 دانشجوی کارشناسی یاسر کیانی 2 استادیار گرفتن اینرسی دورانی در تحقیق حاضر به بررسی ارتعاشات واداشته از حرارت در تیرها پرداخته شده است. سازه

Διαβάστε περισσότερα

فصل اول هدف های رفتاری: پس از پایان این فصل از هنرجو انتظار می رود: 5 روش های اجرای دستور را توضیح دهد. 6 نوارهای ابزار را توصیف کند.

فصل اول هدف های رفتاری: پس از پایان این فصل از هنرجو انتظار می رود: 5 روش های اجرای دستور را توضیح دهد. 6 نوارهای ابزار را توصیف کند. فصل اول آشنایی با نرم افزار اتوکد هدف های رفتاری: پس از پایان این فصل از هنرجو انتظار می رود: 1 قابلیت های نرم افزار اتوکد را بیان کند. 2 نرم افزار اتوکد 2010 را روی رایانه نصب کند. 3 محیط گرافیکی نرم

Διαβάστε περισσότερα

تابع هزینه حداقل میانگین مربعات توأم با حداقل واریانس خطا

تابع هزینه حداقل میانگین مربعات توأم با حداقل واریانس خطا تابع هزینه حداقل میانگین مربعات توأم با حداقل واریانس خطا فریبا پاکیزه حاجی یار هادی صدوقی یزدی دانشجوی کارشناسی ارشدگروه کامپیوتر دانشکده مهندسی دانشگاه فردوسی مشهد ایران f.pazehhajyar@stu.um.ac.r دانشیار

Διαβάστε περισσότερα

عوامل جلوگیری کننده از موازی سازی عبارتند از : 1.هزینه I/O 2.هماهنگی/رقابت

عوامل جلوگیری کننده از موازی سازی عبارتند از : 1.هزینه I/O 2.هماهنگی/رقابت عوامل جلوگیری کننده از موازی سازی عبارتند از :.هزینه I/O.هماهنگی/رقابت ممکن است یک برنامه sequential بهتر از یک برنامه موازی باشد بطور مثال یک عدد 000 رقمی به توان یک عدد طوالنی اینکه الگوریتم را چگونه

Διαβάστε περισσότερα

Delaunay Triangulations محیا بهلولی پاییز 93

Delaunay Triangulations محیا بهلولی پاییز 93 محیا بهلولی پاییز 93 1 Introduction در فصل های قبلی نقشه های زمین را به طور ضمنی بدون برجستگی در نظر گرفتیم. واقعیت این گونه نیست. 2 Introduction :Terrain یک سطح دوبعدی در فضای سه بعدی با یک ویژگی خاص

Διαβάστε περισσότερα

تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد

تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد مبتنی بر روش دسترسی زلیخا سپهوند دانشکده مهندسى برق واحد نجف آباد دانشگاه آزاد اسلامى نجف آباد ایر ان zolekhasepahvand@yahoo.com روح االله

Διαβάστε περισσότερα

فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها(

فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( رفتار عناصر L, R وC در مدارات جریان متناوب......................................... بردار و کمیت برداری.............................................................

Διαβάστε περισσότερα

جلسه ی ۱۱: درخت دودویی هرم

جلسه ی ۱۱: درخت دودویی هرم دانشکده ی علوم ریاضی ساختمان داده ا بان جلسه ی : درخت دودویی هرم مدر س: دکتر شهرام خزاي ی نگارنده: احمدرضا رحیمی مقدمه الگوریتم مرتب سازی هرمی یکی دیگر از الگوریتم های مرتب سازی است که دارای برخی از بهترین

Διαβάστε περισσότερα

3 لصف یربج یاه ترابع و ایوگ یاه ناوت

3 لصف یربج یاه ترابع و ایوگ یاه ناوت فصل توان های گویا و عبارت های جبری 8 نگاه کلی به فصل هدفهای این فصل را میتوان به اختصار چنین بیان کرد: همانگونه که توان اعداد را در آغاز برای توانهای طبیعی عددهای ٢ و ٣ تعریف میکنیم و سپس این مفهوم را

Διαβάστε περισσότερα

راهنمای کاربری موتور بنزینی )سیکل اتو(

راهنمای کاربری موتور بنزینی )سیکل اتو( راهنمای کاربری موتور بنزینی )سیکل اتو( هدف آزمایش : شناخت و بررسی عملکرد موتور بنزینی تئوری آزمایش: موتورهای احتراق داخلی امروزه به طور وسیع برای ایجاد قدرت بکار می روند. ژنراتورهای کوچک پمپ های مخلوط

Διαβάστε περισσότερα

حفاظت مقایسه فاز خطوط انتقال جبرانشده سري.

حفاظت مقایسه فاز خطوط انتقال جبرانشده سري. حفاظت مقایسه فاز در خطوط انتقال جبران شده سري همراه با MOV 2 1 محمد رضا پویان فر جواد ساده 1 دانشگاه آزاد اسلامی واحد گناباد reza.pooyanfar@gmail.com 2 دانشکده فنی مهندسی دانشگاه فردوسی مشهد sadeh@um.ac.ir

Διαβάστε περισσότερα

مود لصف یسدنه یاه لیدبت

مود لصف یسدنه یاه لیدبت فصل دوم 2 تبدیلهای هندسی 1 درس او ل تبدیل های هندسی در بسیاری از مناظر زندگی روزمره نظیر طراحی پارچه نقش فرش کاشی کاری گچ بری و... شکل های مختلف طبق الگویی خاص تکرار می شوند. در این فصل وضعیت های مختلفی

Διαβάστε περισσότερα

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی از ابتدای مبحث تقارن تا ابتدای مبحث جداول کاراکتر مربوط به کنکور ارشد می باشد افرادی که این قسمت ها را تسلط دارند می توانند از ابتدای مبحث جداول کاراکتر به مطالعه

Διαβάστε περισσότερα